Cod sursă (job #513402)

Utilizator avatar rinnaa irina focsa rinnaa IP ascuns
Problemă Romb2 (clasele 9-10) Compilator cpp | 5.60 kb
Rundă Arhiva de probleme Status evaluat
Dată 16 dec. 2019 19:59:34 Scor 0
{\rtf1\ansi\ansicpg1252\cocoartf1561\cocoasubrtf600
{\fonttbl\f0\fnil\fcharset0 Monaco;}
{\colortbl;\red255\green255\blue255;\red109\green109\blue109;\red255\green255\blue255;\red0\green0\blue0;
\red74\green74\blue74;\red225\green223\blue212;\red26\green26\blue26;\red246\green246\blue246;\red251\green0\blue129;
\red0\green0\blue255;\red10\green82\blue135;}
{\*\expandedcolortbl;;\cssrgb\c50196\c50196\c50196;\cssrgb\c100000\c100000\c100000;\cssrgb\c0\c0\c0;
\cssrgb\c36078\c36078\c36078;\cssrgb\c90588\c89804\c86275;\cssrgb\c13333\c13333\c13333;\cssrgb\c97255\c97255\c97255;\cssrgb\c100000\c7843\c57647;
\cssrgb\c0\c0\c100000;\cssrgb\c0\c40000\c60000;}
\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0
\deftab720
\pard\pardeftab720\partightenfactor0

\f0\fs24 \cf2 \cb3 \expnd0\expndtw0\kerning0
#include <stdio.h>\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 02.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb8 \'a0\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 03.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf7  X[4], Y[4];\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 04.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb8 \'a0\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 05.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf7  main()\{\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 06.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb8 int\cf7  t;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 07.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 FILE\cf7  *fin = \cf9 fopen\cf7 (\cf10 "romb2.in"\cf7 , \cf10 "r"\cf7 );\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 08.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb8 FILE\cf7  *fout = \cf9 fopen\cf7 (\cf10 "romb2.out"\cf7 , \cf10 "w"\cf7 );\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 09.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf9 \cb3 fscanf\cf7 (fin, \cf10 "%d"\cf7 , &t);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 10.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf11 \cb8 for\cf7  (\cf2 int\cf7  i=0;i<t;++i) \{\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 11.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf7  dx, dy, steps, xcity, ycity;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 12.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf9 \cb8 fscanf\cf7 (fin, \cf10 "%d%d%d%d%d"\cf7 , &dx, &dy, &steps, &xcity, &ycity);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 13.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb3 xcity *= dy;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 14.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb8 ycity *= dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 15.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb3 dx *= dy;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 16.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb8 Y[0] = -dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 17.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb3 X[1] =\'a0 dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 18.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb8 Y[2] =\'a0 dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 19.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb3 X[3] = -dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 20.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb8 long\cf7  \cf2 long\cf7  ans = 0;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 21.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf11 \cb3 for\cf7  (\cf2 int\cf7  j=0;j<steps;++j) \{\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 22.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb8 int\cf7  a = (xcity > ycity);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 23.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf7  b = (xcity + ycity > 0);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 24.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb8 int\cf7  q = (a << 1) ^ (a == b);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 25.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb3 xcity <<= 1;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 26.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb8 ycity <<= 1;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 27.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb3 xcity += X[q];\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 28.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb8 ycity += Y[q];\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 29.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb3 ans = (ans << 2) ^ q;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 30.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb8 \}\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 31.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf9 \cb3 fprintf\cf7 (fout, \cf10 "%lld\\n"\cf7 , ans + 1);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 32.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb8 \}\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 33.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf9 \cb3 fclose\cf7 (fin);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 34.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf9 \cb8 fclose\cf7 (fout);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 35.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf11 \cb3 return\cf7  0;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 36.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb8 \}}