Pentru această operație este nevoie să te autentifici.
Cod sursă (job #513403)
Utilizator |
|
IP | ascuns |
---|---|---|---|
Problemă | Romb2 (clasele 9-10) | Compilator | cpp | 5,13 kb |
Rundă | Arhiva de probleme | Status | evaluat |
Dată | 16 dec. 2019 20:00:45 | Scor | 0 |
{\rtf1\ansi\ansicpg1252\cocoartf1561\cocoasubrtf600
{\fonttbl\f0\fnil\fcharset0 Monaco;}
{\colortbl;\red255\green255\blue255;\red109\green109\blue109;\red255\green255\blue255;\red74\green74\blue74;
\red26\green26\blue26;\red246\green246\blue246;\red251\green0\blue129;\red0\green0\blue255;\red10\green82\blue135;
\red225\green223\blue212;}
{\*\expandedcolortbl;;\cssrgb\c50196\c50196\c50196;\cssrgb\c100000\c100000\c100000;\cssrgb\c36078\c36078\c36078;
\cssrgb\c13333\c13333\c13333;\cssrgb\c97255\c97255\c97255;\cssrgb\c100000\c7843\c57647;\cssrgb\c0\c0\c100000;\cssrgb\c0\c40000\c60000;
\cssrgb\c90588\c89804\c86275;}
\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0
\deftab720
\pard\pardeftab720\partightenfactor0
\f0\fs24 \cf2 \cb3 \expnd0\expndtw0\kerning0
#include <stdio.h>\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf5 X[4], Y[4];\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf5 main()\{\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb6 int\cf5 t;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 FILE\cf5 *fin = \cf7 fopen\cf5 (\cf8 "romb2.in"\cf5 , \cf8 "r"\cf5 );\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb6 FILE\cf5 *fout = \cf7 fopen\cf5 (\cf8 "romb2.out"\cf5 , \cf8 "w"\cf5 );\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb3 fscanf\cf5 (fin, \cf8 "%d"\cf5 , &t);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf9 \cb6 for\cf5 (\cf2 int\cf5 i=0;i<t;++i) \{\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf5 dx, dy, steps, xcity, ycity;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb6 fscanf\cf5 (fin, \cf8 "%d%d%d%d%d"\cf5 , &dx, &dy, &steps, &xcity, &ycity);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb3 xcity *= dy;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 ycity *= dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb3 dx *= dy;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 Y[0] = -dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb3 X[1] =\'a0 dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 Y[2] =\'a0 dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb3 X[3] = -dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 20.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb6 long\cf5 \cf2 long\cf5 ans = 0;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 21.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf9 \cb3 for\cf5 (\cf2 int\cf5 j=0;j<steps;++j) \{\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 22.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb6 int\cf5 a = (xcity > ycity);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 23.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf5 b = (xcity + ycity > 0);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 24.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb6 int\cf5 q = (a << 1) ^ (a == b);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 25.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb3 xcity <<= 1;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 26.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 ycity <<= 1;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 27.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb3 xcity += X[q];\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 28.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 ycity += Y[q];\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 29.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb3 ans = (ans << 2) ^ q;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 30.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 \}\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 31.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb3 fprintf\cf5 (fout, \cf8 "%lld\\n"\cf5 , ans + 1);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 32.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 \}\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 33.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb3 fclose\cf5 (fin);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 34.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf7 \cb6 fclose\cf5 (fout);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 35.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf9 \cb3 return\cf5 0;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf4 \cb10 36.\cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \cb6 \}}