Cod sursă (job #513410)

Utilizator avatar rinnaa irina focsa rinnaa IP ascuns
Problemă Romb2 (clasele 9-10) Compilator cpp | 4,84 kb
Rundă Arhiva de probleme Status evaluat
Dată 16 dec. 2019 20:04:59 Scor 0
{\rtf1\ansi\ansicpg1252\cocoartf1561\cocoasubrtf600
{\fonttbl\f0\fnil\fcharset0 Monaco;}
{\colortbl;\red255\green255\blue255;\red109\green109\blue109;\red255\green255\blue255;\red0\green0\blue0;
\red74\green74\blue74;\red26\green26\blue26;\red246\green246\blue246;\red251\green0\blue129;\red0\green0\blue255;
\red10\green82\blue135;}
{\*\expandedcolortbl;;\cssrgb\c50196\c50196\c50196;\cssrgb\c100000\c100000\c100000;\cssrgb\c0\c0\c0;
\cssrgb\c36078\c36078\c36078;\cssrgb\c13333\c13333\c13333;\cssrgb\c97255\c97255\c97255;\cssrgb\c100000\c7843\c57647;\cssrgb\c0\c0\c100000;
\cssrgb\c0\c40000\c60000;}
\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0
\deftab720
\pard\pardeftab720\partightenfactor0

\f0\fs24 \cf2 \cb3 \expnd0\expndtw0\kerning0
#include <stdio.h>\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf6  X[4], Y[4];\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf6  main()\{\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb7 int\cf6  t;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 FILE\cf6  *fin = \cf8 fopen\cf6 (\cf9 "romb2.in"\cf6 , \cf9 "r"\cf6 );\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb7 FILE\cf6  *fout = \cf8 fopen\cf6 (\cf9 "romb2.out"\cf6 , \cf9 "w"\cf6 );\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf8 \cb3 fscanf\cf6 (fin, \cf9 "%d"\cf6 , &t);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf10 \cb7 for\cf6  (\cf2 int\cf6  i=0;i<t;++i) \{\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf6  dx, dy, steps, xcity, ycity;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf8 \cb7 fscanf\cf6 (fin, \cf9 "%d%d%d%d%d"\cf6 , &dx, &dy, &steps, &xcity, &ycity);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb3 xcity *= dy;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb7 ycity *= dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb3 dx *= dy;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb7 Y[0] = -dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb3 X[1] =\'a0 dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb7 Y[2] =\'a0 dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb3 X[3] = -dx;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb7 long\cf6  \cf2 long\cf6  ans = 0;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf10 \cb3 for\cf6  (\cf2 int\cf6  j=0;j<steps;++j) \{\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb7 int\cf6  a = (xcity > ycity);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb3 int\cf6  b = (xcity + ycity > 0);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf2 \cb7 int\cf6  q = (a << 1) ^ (a == b);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb3 xcity <<= 1;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb7 ycity <<= 1;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb3 xcity += X[q];\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb7 ycity += Y[q];\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb3 ans = (ans << 2) ^ q;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb7 \}\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf8 \cb3 fprintf\cf6 (fout, \cf9 "%lld\\n"\cf6 , ans + 1);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb7 \}\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf8 \cb3 fclose\cf6 (fin);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf8 \cb7 fclose\cf6 (fout);\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf5 \
\pard\pardeftab720\partightenfactor0
\cf10 \cb3 return\cf6  0;\cf0 \cb1 \
\pard\pardeftab720\partightenfactor0
\cf6 \cb7 \}}