#include <bits/stdc++.h>
using ll=long long;
#define S second
#define F first
#define endl '\n'
const int mod=1e9+7;
const double pi=3.14159265359;
const int maxn=10001;
using namespace std;
int t=1,n,m,k;
int parent[maxn],rang[maxn];
vector<pair<int,pair<int,int>>> A,B;
// Creating shortcut for an integer pair
typedef pair<int, int> iPair;
// Structure to represent a graph
struct Graph
{
int V, E;
vector< pair<int, iPair> > edges;
// Constructor
Graph(int V, int E)
{
this->V = V;
this->E = E;
}
// Utility function to add an edge
void addEdge(int u, int v, int w)
{
edges.push_back({w, {u, v}});
}
// Function to find MST using Kruskal's
// MST algorithm
int kruskalMST();
};
// To represent Disjoint Sets
struct DisjointSets
{
int *parent, *rnk;
int n;
// Constructor.
DisjointSets(int n)
{
// Allocate memory
this->n = n;
parent = new int[n+1];
rnk = new int[n+1];
for (int i = 0; i <= n; i++)
{
rnk[i] = 0;
//every element is parent of itself
parent[i] = i;
}
}
int find(int u)
{
if (u != parent[u])
parent[u] = find(parent[u]);
return parent[u];
}
// Union by rank
void merge(int x, int y)
{
x = find(x), y = find(y);
/* Make tree with smaller height
a subtree of the other tree */
if (rnk[x] > rnk[y])
parent[y] = x;
else // If rnk[x] <= rnk[y]
parent[x] = y;
if (rnk[x] == rnk[y])
rnk[y]++;
}
};
/* Functions returns weight of the MST*/
int Graph::kruskalMST()
{
int mst_wt = 0;
sort(edges.begin(), edges.end());
DisjointSets ds(V);
vector< pair<int, iPair> >::iterator it;
for (it=edges.begin(); it!=edges.end(); it++)
{
int u = it->second.first;
int v = it->second.second;
int set_u = ds.find(u);
int set_v = ds.find(v);
if (set_u != set_v)
{
// Current edge will be in the MST
// so print it
//cout << u << " - " << v << endl;
// Update MST weight
mst_wt += it->first;
// Merge two sets
ds.merge(set_u, set_v);
}
}
return mst_wt;
}
int find(int i){
int ans;
if(i==parent[i])ans=i;
else{
ans=find(parent[i]);
}
parent[i]=ans;
return ans;
}
void unite(int i,int j){
int i1=find(i);
int j1=find(j);
if(i1==j1)return;
else if(rang[i1]>rang[j1]){
parent[j1]=i1;
rang[i1]=max(rang[i1],rang[j1]+1);
}
else {
parent[i1]=j1;
rang[j1]=max(rang[j1],rang[i1]+1);
}
}
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
int createMST(){
int ans=0;
for(auto it:A){
int a=it.S.F,b=it.S.S;
int val=it.F;
if(find(a)==find(b))continue;
else{
unite(a,b);
B.push_back({val,{a,b}});
}
ans+=val;
}
return ans;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
ifstream cin("zapada.in");
ofstream cout("zapada.out");
cin>>n>>m>>k;
if(m>1000){
for(int i=0;i<m;i++){
int c1,c2,c3;
cin>>c1>>c2>>c3;
A.push_back({c3,{c1-1,c2-1}});
}
for(int i=0;i<n;i++){
parent[i]=i;
rang[i]=1;
}
sort(A.begin(),A.end());
int ans;
ans=createMST();
cout<<ans<<endl;
A=B;
while(k--){
int c1,c2,c3;
cin>>c1>>c2>>c3;
vector<pair<int,pair<int,int>>>::iterator j,i;
j=A.end();
j--;
while(j!=A.begin()&&j->F>c3){
j--;
}
i=A.end();
i--;
if(j!=i){
for(int i=0;i<n;i++){
parent[i]=i;
rang[i]=1;
}
A.insert(j,{c3,{c1-1,c2-1}});
B.clear();
ans=createMST();
}
A.clear();
A=B;
cout<<ans<<endl;
}
}
else{
int E=m+k;
int x,y,weight;
Graph g(n, E);
for(int i=0;i<m;i++){
cin>>x;
cin>>y;
cin>>weight;
g.addEdge(x,y,weight);
}
int mst_wt = g.kruskalMST();
cout<< mst_wt<<endl;
for(int i=0;i<k;i++){
cin>>x;
cin>>y;
cin>>weight;
g.addEdge(x,y,weight);
mst_wt = g.kruskalMST();
cout<< mst_wt<<endl;
}
}
}